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Abstract

Creating statistical models that generate accurate predictions of infectious disease incidence is a 

challenging problem whose solution could benefit public health decision makers. We develop a 

new approach to this problem using kernel conditional density estimation (KCDE) and copulas. 

We obtain predictive distributions for incidence in individual weeks using KCDE and tie those 

distributions together into joint distributions using copulas. This strategy enables us to create 

predictions for the timing of and incidence in the peak week of the season. Our implementation of 

KCDE incorporates two novel kernel components: a periodic component that captures seasonality 

in disease incidence, and a component that allows for a full parameterization of the bandwidth 

matrix with discrete variables. We demonstrate via simulation that a fully parameterized 

bandwidth matrix can be beneficial for estimating conditional densities. We apply the method to 

predicting dengue fever and influenza, and compare to a seasonal autoregressive integrated 

moving average (SARIMA) model and HHH4, a previously published extension to the generalized 

linear model framework developed for infectious disease incidence. KCDE outperforms the 

baseline methods for predictions of dengue incidence in individual weeks. KCDE also offers more 

consistent performance than the baseline models for predictions of incidence in the peak week, 

and is comparable to the baseline models on the other prediction targets. Using the periodic kernel 

function led to better predictions of incidence. Our approach and extensions of it could yield 

improved predictions for public health decision makers, particularly in diseases with 

heterogeneous seasonal dynamics such as dengue fever.
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1. Introduction

With the maturation of digital disease surveillance systems in recent years, accurate and 

real-time infectious disease prediction has become an achieveable goal in many contexts. 

These predictions provide valuable information to public health officials planning disease 

prevention and control measures [1]. For example, interventions designed to reduce person-

to-person transmission of disease have been associated with diminished outbreak intensity 

[2]. Accurate predictions can help target such interventions more effectively.

In this work, we use a semi-parametric approach that combines a non-parametric method for 

conditional density estimation referred to as kernel conditional density estimation (KCDE) 

with a parametric method for modeling joint dependence structures known as copulas. We 

apply this method to make predictions for three targets chosen by the United States Centers 

for Disease Control (CDC) as relevant to public health:

1. Incidence h time steps in the future (at “prediction horizon” h).

2. Timing of the week of the current season with the highest incidence.

3. Incidence in the week of the current season with the highest incidence.

These quantities have emerged as being targets of particular utility in making planning 

decisions [3, 4], and variations on these targets have been set as the quantities of interest in 

recent prediction contests [5].

We model the first of these prediction targets directly; predictions for the second and third 

prediction targets are derived from a joint predictive distribution of incidence in each 

remaining week of the season. Using data available up through time t*, we employ KCDE to 

obtain separate predictive distributions for disease incidence in each subsequent week of the 

season. We then combine those marginal distributions using copulas to obtain joint 

predictive distributions for the trajectory of incidence over the following weeks. Without a 

technique like copulas to introduce correlation among week-specific predictions the 

predictions would not realistically represent the time-series nature of infectious disease 

dynamics. Predictive distributions relating to the timing of, and incidence at, the peak week 

can be obtained from this joint predictive distribution. Methods combining non-parametric 

estimates of marginal densities with copulas have been considered previously for other 

applications such as economic time series [6].

In addition to the novel application of these methods to predicting disease incidence, our 

contributions include the use of a periodic kernel specification to capture seasonality in 

disease incidence and a method for obtaining multivariate kernel functions that handle 

discrete data while allowing for a fully parameterized bandwidth matrix. Previous 

implementations of kernel methods involving discrete variables have employed a kernel 

function that is a product of univariate kernel functions [7, 8, 9, 10, 11, 12, 13, 14, 15]. This 

approach forces the kernel function to be oriented in line with the coordinate axes. 

Motivated by results showing that multivariate kernel functions with a bandwidth 

parameterization allowing for flexible orientations can result in improved continuous density 
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estimates [16], we introduce an approach that allows for flexible orientation of discrete 

kernels by discretizing an underlying continuous kernel function.

In a time-series context, KCDE is a local method in the sense that the density estimate for 

observations at future time points conditional on covariates is a weighted combination of 

contributions from previous observations with similar covariate values. Using such local 

methods is a natural idea in predicting nonlinear systems because it imposes little structure 

on the assumed relationship between conditioning and outcome variables. The covariates we 

condition on could include historical observations from the time series we are predicting as 

well as other variables such as weather or the time of the season.

Applications range from similar infectious disease settings where nearest neighbors 

regression has been used to make point predictions for incidence of measles [17] and 

influenza [18] to sports analytics where a version of nearest neighbors regression predicts 

the career trajectories of current NBA players [19]. We note that KCDE can be seen as a 

distribution-based counterpart of nearest neighbors regression. For example, the point 

prediction obtained from nearest neighbors regression is equal to the expected value of the 

predictive distribution obtained from KCDE if a particular kernel function is used in the 

formulation of KCDE (e.g., Hastie et al.[20] discuss the connection between nearest 

neighbors and kernel methods for regression).

KCDE has not previously been applied to obtain predictive distributions for infectious 

disease incidence, but it has been successfully used for prediction in other settings such as 

survival time of lung cancer patients [10], female labor force participation [10], bond yields 

and value at risk in financial markets [21], and wind power [22], among others. Similar 

methods can also be formulated in the Bayesian framework. For example, Zhou et al.[23] 

model the time to arrival of a disease in amphibian populations using Dirichlet processes and 

copulas.

There is also a long history of using other modeling approaches for infectious disease 

prediction, including agent-based models, compartmental models [24, 25], and more generic 

regression-based time series models such as seasonal autoregressive integrated moving 

average (SARIMA) models [26, 27, 28] and generalized linear models with autoregressive 

terms [29, 30], among others. Previous work has also explored a variety of covariates that 

can be used for infectious disease prediction, including measures of access frequency for 

Wikipedia articles [31], data derived from Twitter [32, 33], and climatological variables [34]. 

These models need not be used in isolation; some work has been done on ensemble methods 

combining predictions from multiple model specifications [24, 35]. Unkel et al.[36] is a 

recent reviews of work on forecasting infectious disease, and describes these alternative 

approaches in more detail. Additionally, Chretien et al.[37] and Nsoesie et al.[38] are 

reviews focusing on prediction methods for influenza.

Little research has been done comparing the predictive performance of more detailed and 

disease-mechanistic modeling approaches (agent-based or compartmental models) to more 

generic models (regression or SARIMA). One difficulty in making comparisons to agent-

based models is that these models are often highly parameterized and difficult to 
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independently reproduce or replicate. An additional challenge with agent-based and 

compartmental models is that expert knowledge is required to tailor them to the specific 

disease being modeled, and details of the assumed model specification can have a large 

impact on the quality of predictions [39].

One of the most well-developed modern statistical frameworks suitable for infectious 

disease prediction is the “HHH4” model [30, 40, 41, 42, 43], a specific extension of a 

generalized linear model developed for infectious disease. Another commonly used and 

widely studied approach is the seasonal autoregressive integrated moving average 

(SARIMA) model. However, both of these approaches have limitations that also hamper 

generalizability. The HHH4 model specifies a discrete distribution for the observed 

incidence measure, an appropriate assumption for some data sets, but not for others. The 

standard SARIMA specification is based on continuous distributions which means that it 

cannot be directly applied to modeling discrete case count data if low case counts are 

observed [36].

Several key features distinguish our approach from existing methods commonly used for 

predicting infectious disease incidence. First, we generate full predictive distributions to 

fully characterize uncertainty in the predictions. Compared to point predictions, this gives 

decision makers additional information in situations where the predictive distribution is 

skewed or has multiple modes. Second, unlike many methods common in the infectious 

disease literature, KCDE makes minimal assumptions about the underlying system 

governing disease dynamics. This flexibility makes KCDE suitable for application to a wide 

variety of time series, including diseases with different latent dynamics. Third, the method 

can easily be used with either discrete or continuous data by substituting one kernel function 

specification for another.

One of the few previous methods that shares these characteristics is an Empirical Bayes 

method employed by Brooks et al.[44] and van Panhuis et al.[45] that also gives a joint 

predictive distribution for incidence in each remaining week in the season. Their approach 

contrasts with ours in that it takes a “top-down” approach to constructing that predictive 

distribution, saying that the general trend in incidence over the course of the season will look 

like a modified version of the season-long trend in incidence from a previous season. On the 

other hand, the approach we discuss in the present article is a “bottom-up” method that first 

constructs predictive distributions for incidence in individual weeks and then ties those 

marginal distributions together to obtain a joint distribution for incidence in all weeks of the 

season. It seems likely that both of these approaches have something to offer in predicting 

disease incidence; we will return to this point in the conclusions.

The remainder of this article is organized as follows. First, we describe our approach to 

prediction using KCDE and copulas. Next, we present the results of a simulation study 

comparing the performance of KCDE for estimating discrete conditional distributions using 

a fully parameterized bandwidth matrix and a diagonal bandwidth matrix. We then illustrate 

our methods by applying them to predicting disease incidence in two data sets: one with a 

discrete measure of weekly incidence of dengue fever in San Juan, Puerto Rico and a second 
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with a continuous measure of weekly incidence of influenza in the United States. We 

conclude with a discussion of these results.

2. Method Description

Suppose we observe a measure zt of disease incidence at evenly spaced times indexed by t = 

1, …, T. Our goal is to obtain predictions relating to incidence after time T using time series 

of incidence up to time T as well as time series of covariates up to time T. Broadly, our 

model works in two stages. In the first stage, KCDE is used to obtain separate predictive 

distributions for incidence in each remaining week of the season; this will be described in 

detail in Subsection 2.1. Second, we use copulas to model the dependence in incidence 

across different weeks; this will be described in detail in Subsection 2.2. These two model 

components together yield a joint predictive distribution for the trajectory disease incidence 

over the rest of the season, and predictive distributions for the targets of interest can be 

obtained from this joint distribution for disease incidence. We introduce notation and give a 

more detailed statement of the overall structure of the model here, and describe its 

components and parameter estimation in more detail in the following Subsections.

We allow the incidence measure to be either continuous or discrete and use the term density 

to refer to either the probability density function or probability mass function as appropriate. 

We will use a colon notation to specify vectors: for example, zs:t = (zs, …, zt). The variable 

t* ∈ {1, …, T} will be used to represent a time at which we desire to form a predictive 

distribution, using observed data up through t* to predict incidence after t*. When we apply 

the method to perform prediction for incidence after time T, t* is equal to T; however, t* 

takes other values in the estimation procedure we describe below.

At time t*, our model approximates f (z(t*+1):(t*+Ht*) | t*, z1:t*) by conditioning only on the 

time at which we are making the predictions and observed incidence at a few recent time 

points with lags given by the non-negative integers l1, …, lM: f (z(t*+1):(t*+Ht*) | t*, zt*−l1, …, 

zt*−lM). For notational simplicity, we take lM to be the largest of these lags. The model 

represents this density as follows:

(1)

Here, each fh (zt*+h | t*, zt*−l1, …, zt*−lM; θh) is a predictive density for one prediction 

horizon obtained through KCDE. The distribution for each prediction horizon depends on a 

separate parameter vector θh. The function cHt* (·) is a copula used to tie these marginal 

predictive densities together into a joint predictive density, and depends on parameters ξHt*. 

In our applications, we will obtain a separate copula fit for each trajectory length Ht* of 

interest for the prediction task.
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Let W denote the number of time points in a disease season (e.g., W = 52 if we have weekly 

data). For each time t*, let St* denote the time index of the last time point in the previous 
season, so that the times in the same season as t* are indexed by St* + 1, …, St* + W. 

Finally, let Ht* = W − (t* − St*) denote the number of time points after t* that are in the 

same season as t*. Ht* gives the largest prediction horizon for which we need to make a 

prediction in order to obtain predictions for all remaining time points in the season.

We obtain predictive distributions for each of three prediction targets. We will model the 

first of these prediction targets directly and frame the second and third as suitable integrals 

of a predictive distribution f (z(t*+1):(t*+Ht*) | t*, z1:t*) for the trajectory of incidence over all 

remaining weeks in the season:

1. Incidence in a single future week with prediction horizon h ∈ {1, …, W}:

2. Timing of the peak week of the current season, w* ∈ {1, …, W}:

(2)

3. Binned incidence in the peak week of the current season:

(3)

In predicting binned incidence in the peak week, we are following the precedent set in 

prediction competitions run by the CDC [3, 4]. In practice, we use Monte Carlo integration 

to evaluate the integrals in Equations (2) and (3) by sampling incidence trajectories from the 

joint predictive distribution.

2.1. KCDE for Predictive Densities at Individual Prediction Horizons

We now discuss the use of KCDE to obtain fh(zt*+h | t*, zt*−l1, …, zt*−lM; θh), the predictive 

density for disease incidence at a particular horizon h after time t*. To simplify the notation, 

we define two new variables:  represents the prediction target relative to time t, and 
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Xt = (t, Zt−l1, …, Zt−lM) represents the vector of predictive variables relative to time t. With 

this notation, the distribution we wish to estimate is .

To estimate this distribution, we use the observed data to form the pairs (xt, ) for all t = 1 + 

lM, …, T − h (for smaller values of t there are not enough observations before t to form xt 

and for larger values of t there are not enough observations after t to form ). We then 

regard these pairs as a (dependent) sample from the joint distribution of (X, Yh) and estimate 

the conditional distribution of Yh | X via KCDE:

(4)

(5)

(6)

Here we are working with a slightly restricted specification in which the kernel function 

KX,Y can be written as the product of KX and KY|X. With this restriction, we can interpret 

KX as a weighting function determining how much each observation (xt, ) contributes to 

our final density estimate according to how similar xt is to the value xt* that we are 

conditioning on. These weights are the  in Equations (5) and (6). KY|X is a density 

function that contributes mass to the final density estimate near . The parameters θh 

control the locality and orientation of the weighting function and the contributions to the 

density estimate from each observation. In Equations (4) through (6), τ ⊆ {(1 + lM), …, (T − 

h)} indexes the subset of observations used in obtaining the conditional density estimate; we 

return to how this subset of observations is defined in the discussion of estimation below.

We take the kernel function KY,X to be a product kernel with one component being a 

periodic kernel in time and the other component capturing the remaining covariates, which 

are measures of disease incidence:

Here we have set  where θh encompasses parameters both about the 

periodicity and incidence.
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The periodic kernel function was originally developed in the literature on Gaussian 

Processes [46], and is defined by

(7)

We illustrate this kernel function in Figure 1. It has two parameters: , where ρh 

determines the length of the periodicity and ηh determines the strength and locality of this 

periodic component in computing the observation weights . In our applications, we have 

fixed ρh = π/52, so that the kernel has period of length 1 year with weekly data. Using this 

periodic kernel provides a mechanism to capture seasonality in disease incidence by 

allowing the observation weights to depend on the similarity of the time of year that an 

observation was collected and the time of year at which we are making a prediction.

The second component of our kernel is a multivariate kernel incorporating all of the other 

variables in xt and . In our applications, these variables are measures of incidence; for 

brevity of notation, we collect them in the column vector z̃t = (zt−l1, …, zt−lM, zt+h)′. These 

incidence measures are continuous in the application to influenza and discrete case counts in 

the application to dengue fever. In the continuous case, we have used a multivariate log-

normal kernel function parameterized in terms of its mode rather than its mean (Figure 1). 

Using the mode ensures that the contribution to the conditional density is largest near zt+h. 

This kernel specification automatically handles the restriction that counts are non-negative, 

and approximately captures the long tail in disease incidence that we will illustrate in the 

applications Section below. This kernel function has the following functional form:

(8)

In this expression,1̱ is a column vector of ones. The matrix B is a bandwidth matrix that 

controls the orientation and scale of the kernel function. Subtracting B1̱ in the numerator 

has the effect of placing the mode of the kernel function at zt+h. This bandwidth matrix is 

parameterized by . In this work we have considered two parameterizations: a diagonal 

bandwidth matrix, and a fully parameterized bandwidth based on the Cholesky 

decomposition [47]. To obtain the discrete kernel (Figure 1), we integrate an underlying 

continuous kernel function over hyper-rectangles containing the points in the range of the 

discrete random variable (see supplement for details). According to Equations (4) through 

(6),  makes a contribution to calculation of the observation weights by measuring the 

similarity of the lagged observations of incidence included in z̃t* and z̃t, and contributes 

mass to the predictive density for future incidence zt*+h near the observed incidence zt+h.

We estimate the bandwidth parameters θh by numerically maximizing the cross-validated 

log score of the predictive distributions for the observations in the training data. For a 
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random variable Y with observed value y the log score of the predictive distribution fY is 

log{fY (y)}. A larger log score indicates better model performance. In obtaining the cross-

validated log score for the predictive distribution at time t*, we leave the year of training 

data before and after the time t* out of the set τ in Equations (4) through (6). Our primary 

motivation for using the log score as the optimization target during estimation is that this is 

the criteria that has been used to evaluate and compare prediction methods in two recent 

government-sponsored infectious disease prediction contests [3, 4]. We apply our method to 

the data sets from those competitions in the applications section below, and report log scores 

to facilitate comparisons with other results from those competitions that may be published in 

the future. In general, the log score is a strictly proper scoring rule; i.e., its expectation is 

uniquely maximized by the true predictive distribution [48]. However, its use as an 

optimization criterion has been criticised for being sensitive to outliers [48]. In the kernel 

density estimation literature, this approach to estimation is referred to as likelihood cross-

validation, and similar criticisms have been made regarding its performance in handling 

outliers and estimating heavy-tailed distributions [49, 50]. This is relevant to application of 

the method to infectious disease prediction, as the distribution of disease incidence tends to 

be skewed right with a long upper tail. It is possible that the use of cross-validated log scores 

in estimation could lead to too-large bandwidth estimates, in turn inflating the width of the 

predictive distribution. We will return to this possibility in our conclusions.

2.2. Combining Marginal Predictive Distributions with Copulas

We use copulas [51] to tie the marginal predictive distributions for individual prediction 

horizons obtained from KCDE together into a joint predictive distribution for the trajectory 

of incidence over multiple time points. The copula is a parametric function that captures the 

dependence relations among a collection of random variables and allows us to compute the 

joint distribution from the marginal distributions. Supplemental Figure 7 shows that the 

copula induces positive correlation in the predictive distributions for incidence in nearby 

weeks, so that high incidence in one week is more likely to be followed by high incidence in 

weeks soon after.

To describe our methods for both continuous and discrete distributions, it is most convenient 

to frame the discussion in this Subsection in terms of cumulative distribution functions 

(CDF) instead of density functions. We will use a capital C to denote the copula function for 

CDFs and a lower case c to denote the copula function for densities. Similarly, the predictive 

densities  we obtained in the previous Subsection naturally yield 

corresponding predictive CDFs .

Our model specifies the joint CDF for  as follows:

(9)
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The copula function CHt* maps the marginal CDF values to the joint CDF value. We use the 

isotropic normal copula implemented in the R [52] package copula [53]. The copula 

function is given by

(10)

where Φ−1 is the inverse CDF of a univariate normal distribution with mean 0 and variance 1 

and ΦΣH is the CDF of a multivariate normal distribution with mean 0 ̱ and covariance 

matrix ΣH. The isotropic specification sets , where

(11)

Intuitively,  captures the amount of dependence between incidence levels at future times 

that are d weeks apart.

We obtain a separate copula fit for each value of H from 2 to W (note that a copula is not 

required for “trajectories” of length H = 1). Estimation for the model parameters proceeds in 

two stages: first we estimate the parameters for KCDE separately for each prediction 

horizon h = 1, …, H as described in the previous Section, and second we estimate the copula 

parameters while holding the KCDE parameters fixed. We give a more detailed description 

of this estimation procedure in the supplement. In general the two-stage approach may result 

in some loss of efficiency relative to one-stage methods, but this efficiency loss is small for 

some model specifications [54]. Also, it results in a large reduction in the computational cost 

of parameter estimation.

3. Simulation Study

One component of the KCDE model specification outlined in Subsection 2.1 is the 

parameterization of the bandwidth matrix. We conducted a simulation study to examine the 

utility of using a fully parameterized matrix specification instead of a diagonal bandwidth 

matrix when estimating discrete conditional distributions with KCDE. The simulation study 

is motivated by the simplest case of predicting incidence in a single week using KCDE: 

predicting incidence at time t + h given incidence at time t. A central characteristic of the 

disease incidence data we analyze in the next Section is the presence of positive correlation 

between incidence in nearby time points (Supplemental Figure 2). In this simulation study 

we demonstrate that in the presence of such correlation, using fully parameterized 

bandwidth matrices can improve conditional density estimates over using a diagonal 

bandwidth.

There are many factors that determine the relative performance of KCDE estimators with 

different bandwidth parameterizations. In this simulation study, we vary just one of these 

factors: the sample size (N = 100 or N = 1000). These sample sizes are roughly similar to the 
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number of observations in the training data sets used in the applications in Section 4 (where 

we have training sets of size 692 in the application to influenza and 988 in the application to 

dengue fever).

We conducted 500 simulation trials for each sample size. In each trial, we simulated N 
observations of a discretized bivariate normal random variable X with mean 0̱ and 

covariance matrix Σ where Σ has 1 on the diagonal and 0.9 off of the diagonal (see 

Supplement for further detail). Using these observations as a training data set, we estimated 

the bandwidth parameters for two variations on a KCDE model for the conditional 

distribution of X1 | X2: one with a diagonal bandwidth matrix specification and one with a 

fully parameterized bandwidth matrix. In this simulation study, the kernel function was 

obtained by discretizing a multivariate normal kernel function rather than a log-normal 

kernel function as in the applications below. Otherwise, the method is as described 

previously.

We evaluated the conditional density estimates by an importance sampling approximation of 

the Hellinger distance of the conditional density estimate from the true conditional density, 

integrated over the range of the covariates (see supplement). The Hellinger distance lies 

between 0 and 1, with smaller values indicating that the density estimate is better. It has been 

argued that the Hellinger distance is preferred to other measures of the quality of kernel 

density estimates such as integrated squared error [55]. For each combination of the training 

set sample size, dimension, and simulation trial, we compute the difference between the 

Hellinger distance from the true conditional distribution achieved with a diagonal bandwidth 

matrix and with a fully parameterized bandwidth matrix.

The results indicate that in the presence of correlation between the conditioning variable and 

the density estimation target, using a fully parameterized bandwidth matrix instead of a 

diagonal bandwidth generally yields improved density estimates as measured by the 

integrated Hellinger distance (Figure 2). The average improvement from using a fully 

parameterized bandwidth matrix is larger with a sample size of N = 100 instead of N = 1000, 

but there is also more variation in performance with the smaller sample size. This suggests 

that using a fully parameterized bandwidth may be helpful in applications similar to 

infectious disease prediction where there is correlation between the quantity being predicted 

(e.g., future incidence) and the quantities that we condition on in order to make the 

predictions.

4. Applications

In this Section, we illustrate our methods through applications to prediction of infectious 

disease incidence in two examples with real disease incidence data sets. We begin with a 

discussion of the data, then we describe the models we compare and the evaluation 

procedures before discussing the results.

4.1. Data

We apply our methods to two infectious disease data sets (Figure 3). The first data set 

consists of a weekly count of reported cases of dengue fever in San Juan, Puerto Rico. The 
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second data set consists of a composite indicator of flu activity generated by the CDC and 

referred to as the weighted influenza-like illness (wILI) index. The wILI is calculated as the 

proportion of doctor visits at clinics participating in the U.S. Outpatient Influenza-like 

Illness Surveillance Network (ILINet) where the patient had influenza-like illness. The 

measured proportions are weighted by state population and combined into region-level 

scores. We did not attempt to replicate this weighting scheme and instead used wILI directly 

in our models. These data sets were used in two recent prediction competitions sponsored by 

the United States federal government [3, 4].

An important feature of both of these time series is that they exhibit fairly regular seasonal 

trends: incidence of dengue fever usually reaches a peak during the summer months and a 

nadir during the winter months, while influenza typically peaks during the winter and 

reaches a nadir during the summer months. However, within these general trends there is 

variation in the timing and severity of the disease seasons, with more variability across 

different seasons for dengue than for influenza. For the purposes of making predictions of 

seasonal targets with the dengue data, we have used the definition of a season used by the 

competition administrators: the season begins in the week starting on April 29th or April 

30th (depending on the year); historically, this has been near the week of the year with 

lowest dengue incidence. For the influenza data, we define the season as beginning in the 

30th week of the year; which is the week starting on July 29th or July 30th. Again, 

historically the lowest incidence of influenza has tended to occur near that time.

4.2. Prediction targets and evaluation criteria

We use the three prediction targets described in Section 2 (Supplemental Figure 3). As 

discussed there, we make predictions for binned incidence in the peak week. For the dengue 

data set, the bins are [0, 50), [50, 100), …, [500, ∞). For the influenza data set, the bins are 

[0, 0.5), [0.5, 1), …, [13, ∞). Our predictions for incidence in individual weeks are for the 

raw, unbinned, incidence measure.

We divided each data set into two subsets. The last four years of each data set are reserved as 

a test set for evaluating model performance. The size of the test set was determined by the 

dengue prediction competition administrators. In the influenza data set, the last four years of 

data included only observations for three full seasons. The first period is used as a training 

set in estimating the model parameters. For the influenza data, we had 14 years of training 

data (1997 through 2010); for the dengue data, we had 19 seasons of training data 

(1990/1991 through 2008/2009). All predictions are made as though in real time, assuming 

that once cases are reported they are never revised and that there are no delays in reporting. 

Specifically, we use only data up through a given week to make predictions for incidence 

after that week.

We evaluated model performance using log scores for predictions in the test phase for each 

data set (log scores were defined previously in Section 2.1). For each season in the testing 

period, we examined the log scores for predictions made in all weeks of the season, as well 

as for smaller subsets of those weeks that are most relevant to decision makers using 

predictions to set public health policy. Specifically, for incidence in individual weeks, we 

examined model performance for predictions of incidence in the weeks where the eventually 
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observed incidence was at least 2/3 of the maximum incidence observed in the testing phase. 

For predictions of incidence in the peak week and the timing of the peak week, we evaluated 

performance of predictions made before the peak actually occurred. Additionally, for 

predictions of incidence in individual weeks, we considered the coverage rate of predictive 

intervals obtained from each method.

We considered two summaries of the log scores of these predictions for each target: 1) the 

mean log score across all weeks (and across all prediction horizons, in the case of 

predictions of incidence in individual weeks); and 2) the minimum log score across all 

weeks and prediction horizons. The mean log score is a strictly proper score, and its 

expected value is uniquely maximized by the true conditional distribution for Y |X. The 

minimum log score is not a proper score, and therefore relative performance of the different 

models according to this metric should be interpreted cautiously. The minimum log score 

can be viewed as a measure of worst-case performance of a given method. We contend that 

consideration of worst-case performance is important for predictions that may be used by 

public health officials as inputs to setting public policy. For example, [5] note that “[p]ublic 

health actions informed by forecasts that later prove to be inaccurate can have negative 

consequences, including the loss of credibility, wasted and misdirected resources, and, in the 

worst case, increases in morbidity or mortality.” It is therefore important that predictions for 

key times such as the season peak assign non-negligible probability to the outcome that 

eventually occurs, and this is what the minimum log score measures. However, we 

emphasize that the minimum log score should only be considered as a secondary measure to 

characterize methods that have demonstrated good overall performance as measured by the 

mean log score.

4.3. Models

Our applications evaluate four variations on KCDE model specifications:

1. The “Null KCDE” model omits the periodic component of the kernel function 

and uses a diagonal bandwidth matrix specification for the incidence kernel.

2. The “Full Bandwidth KCDE” model omits the periodic component of the kernel 

function and uses a fully parameterized bandwidth matrix specification for the 

incidence kernel.

3. The “Periodic KCDE” model includes the periodic component of the kernel 

function and uses a diagonal bandwidth matrix specification for the incidence 

kernel.

4. The “Periodic, Full Bandwidth KCDE” model includes the periodic component 

of the kernel function and uses a fully parameterized bandwidth matrix 

specification for the incidence kernel.

We include three baseline models for comparison to our methods. The first is a seasonal 

autoregressive integrated moving average (SARIMA) model. In fitting this model, we first 

transformed the observed incidence measure to the log scale (after adding 1 in the dengue 

data set, which included some observations of 0 cases); this transformation makes the 

normality assumptions of the SARIMA model more plausible. We then performed first-order 
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seasonal differencing, and obtained the final model fits using the auto.arima function in 

R’s forecast package [56]; this function uses a stepwise procedure to determine the terms 

to include in the model. This procedure resulted in a SARIMA(2,0,0)(2,1,0)52 model for the 

influenza data and a SARIMA(3,0,2)(1,1,0)52 model for the dengue data. In applying this 

model to the dengue data, we have discretized the predictive distributions obtained from 

SARIMA using the same methods that we used for KCDE. This discretization was not used 

in model estimation since it is not available in the standard estimation software.

The second baseline model is the “HHH4” model for infectious disease incidence [30, 41, 

42], available in the surveillance [57] package in R. This is an extension to the 

generalized linear model framework with either a Poisson or Negative Binomial family. The 

majority of work with this model has focused on modeling multiple time series, with models 

for a single time series (as considered in the present article) obtained as a special case. 

Although the primary focus of development of this model has been for multivariate time 

series, and further refinements to the model are possible, it provides a good baseline for 

comparison. The mean is modeled with a linear combination of autoregressive and 

sinusoidal components. We followed the model selection and estimation procedures outlined 

in [42], working with a restricted version of the model for a single time series (see 

Supplement for details). The prediction target for dengue data is discrete case counts and 

easily implemented in the HHH4 software. The prediction target for flu requested by the 

CDC is proportion of doctor visits with flu-like illness weighted by state population. 

Implementing this in HHH4 would require weighting state-level predictions. As we did not 

attempt to make state level predictions we did not use HHH4 as a reference model for the flu 

data.

For predictions of peak timing and binned peak incidence, we considered a third naive 

baseline that assigned equal probability to all bins (where for peak timing, there is one bin 

for each week in the season).

4.4. Results

4.4.1. For predictions of incidence in individual weeks, KCDE outperforms the 
baseline models (Table 1)—KDCE specifications including a periodic kernel 

component consistently had the highest or close to the highest mean log scores for both data 

sets whether aggregating across all weeks or only high incidence weeks. Additionally, the 

worst-case performance of the HHH4 and SARIMA models was much lower than the worst-

case performance of any of the KCDE specifications for all combinations of the data set and 

the subset of weeks considered.

In the application to dengue fever, KCDE offered the largest improvements relative to the 

baseline models for predictions in weeks with high incidence near the season peaks (Table 1, 

Figure 4). For example, in weeks with more than 184 reported cases (two thirds of the 

maximum weekly case count in the testing period), the median log score difference between 

the predictions from the Periodic, Full Bandwidth KCDE model and SARIMA was about 

1.48 (Q1 = 0.25, Q3 = 2.72) where values greater than zero show KCDE making more 

accurate predictions than SARIMA (Supplemental Table 1). The median log score difference 

relative to HHH4 for these weeks was about 0.94 (Q1 = 0.41, Q3 = 1.95). Translating to a 
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probability scale, in these periods of high incidence this KCDE specification assigned about 

5 times higher probability to the observed outcome as SARIMA on average and about 1.25 

times higher probability as HHH4 on average. Moreover, there were cases where the KCDE 

model assigned up to about 450 times as much probability to the realized outcome as 

SARIMA, and over 1300 times as much probability as HHH4. Across all weeks in the test 

period and all prediction horizons, neither baseline model ever outperformed this KCDE 

specification by a factor of more than 9. Similar patterns also hold with the other KCDE 

specifications. For the application to influenza, there were not consistent trends in the 

relative performance of the models in low and high incidence weeks.

In both applications, the predictive intervals for incidence in individual weeks are quite wide 

for all of the methods we considered (Figure 5). However, for dengue fever the coverage 

rates in the test phase were actually lower than the nominal coverage rate for all methods 

(Table 2). The KCDE models were generally closer to the target coverage rates than the 

baseline models, indicating that the width of the predictive intervals from KCDE give an 

appropriate representation of uncertainty about future dengue incidence. For predictions of 

influenza, the coverage rates for all KCDE specifications as well as the baseline SARIMA 

model were too large. For this application, none of the models had consistently better or 

worse performance than the others as measured by coverage rates of the predictive intervals.

4.4.2. For predictions of peak incidence the KCDE models with periodic kernel 
components had better mean performance than the baseline models in the 
application to dengue fever, and in both applications the KCDE models had 
more consistent performance across seasons than the baseline models (Table 
3, Figure 6)—In the application to dengue fever, the HHH4 model struggled to predict 

peak incidence in the two test phase seasons with the highest peak, generally performing 

worse than a naive approach using equal bin probabilities in those seasons (Figure 6). The 

SARIMA model did well at predicting peak incidence for dengue, with overall performance 

that was only slightly lower than the Periodic, Full Bandwidth KCDE specification and 

similar performance in all four test phase seasons. However, in the application to influenza 

the SARIMA model struggled in the test phase season with highest incidence, with 

performance levels generally falling below the approach using equal bin probabilities. 

Meanwhile, the KCDE specifications had much more consistent performance across all test 

phase seasons, and never did much worse than using equal bin probabilities. For dengue 

fever the Periodic, Full Bandwidth KCDE specification had the highest average log scores 

and best worst-case log scores for predictions of peak incidence (Table 3), while in the 

application to influenza the KCDE models did only a little worse than SARIMA overall, and 

did much better in the influenza season with highest incidence.

4.4.3. For predictions of peak week timing made before the peak actually 
occurred, the KCDE models without periodic kernel components had the best 
performance in the application to dengue fever, but the SARIMA model had 
the best performance in the application to influenza—For dengue fever, both the 

SARIMA and HHH4 models consistently underperformed relative to the naive approach 

using equal bin probabilities for predictions of peak timing. On the other hand, the KCDE 
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models, and particularly those that did not use a periodic kernel component, generally 

outperformed this baseline. There was quite a bit of variability in the timing of peak dengue 

incidence between test phase seasons, and the models including seasonal terms sometimes 

failed badly when the peak occurred relatively early or late (Figure 6). The KCDE 

specifications without periodic terms were more robust to this variation in season timing. 

There was less variability in the timing of the season peak in the three complete test phase 

seasons in our influenza data, and the SARIMA model was the overall best performing 

model in that application. However, the SARIMA model was still outperformed by the 

KCDE models in the influenza season with the latest peak. All methods we evaluated tend to 

converge rapidly on the truth once the peak week has passed.

4.4.4. In most cases, including a periodic kernel component in the KCDE 
specification led to improved predictions—KCDE specifications including a periodic 

kernel component had better average performance than the corresponding KCDE 

specification without a periodic kernel component for predicting incidence in individual 

weeks in all combinations of the data sets and the subset of weeks considered. The periodic 

kernel also led to better predictions of peak incidence in every case except for early season 

predictions in the application to influenza when the bandwidth matrix for the incidence 

kernel component was fully parameterized. For predictions of peak timing, including the 

periodic kernel component was helpful in the application to influenza, but led to worse 

performance for early-season predictions of the peak timing for dengue incidence.

4.4.5. We have seen that the KCDE model outperformed the baseline models 
in the application to dengue, but the SARIMA model generally had higher 
mean performance than the KCDE models in the application to influenza 
(although SARIMA had less consistent performance for predictions of 
incidence in individual weeks or at the peak week in both applications)—We 

believe that the difference in relative performance of KCDE and the baseline models for 

prediction in the dengue and influenza data sets can be explained to a great extent by 

differences in the underlying disease processes and how they relate to the model 

specifications. The most salient difference between the two time series is the much greater 

season-to-season variability in the dengue data set relative to the influenza data set (Figure 

3). For dengue, the peak incidence in the largest season is about 30 times larger than the 

peak incidence in the smallest season; this ratio is only about 3 for influenza. It may be the 

case that the restrictive structure of the SARIMA and HHH4 models means that they are not 

able to capture the dynamics of dengue incidence accurately. For example, Held and Paul 

[42] discuss the fact that the seasonal structure in the HHH4 model does not explicitly allow 

for different amplitudes in different seasons. Relaxing that structure by using a non-

parametric approach such as KCDE may yield improved capability to represent the disease 

dynamics. This is less of an issue in predicting influenza where there is much more 

consistency across different seasons – but even in that case, SARIMA was outperformed by 

KCDE for predicting peak incidence in the season with the highest incidence and for 

predicting peak timing in the season with the latest peak (Figure 6).
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5. Conclusions

Prediction of infectious disease incidence at horizons of more than a few weeks is a 

challenging task. We have presented a semi-parametric approach to doing this based on 

KCDE and copulas and found that it is a viable method that can yield improved predictions 

relative to commonly employed methods in this field. In predicting incidence of dengue 

fever in individual weeks, our approach offered consistent and substantial performance gains 

relative to a SARIMA model and the HHH4 model, particularly in periods of high incidence 

near the season peak that are of most interest to public health decision makers. In the 

application to influenza our method did about as well as SARIMA on average for this 

prediction target, but there were some cases where the SARIMA model assigned a very low 

probability density to the eventually observed outcome; the KCDE model was more 

consistent in this regard.

Across both data sets, our method also offered more consistency than the baseline models in 

predictions for incidence in the peak week. Both baseline models suffered in one or more 

seasons with high incidence where they made substantially worse predictions than a naive 

model assigning equal probability to each incidence bin, whereas KCDE never did much 

worse than this naive model. For pre-peak predictions of peak week timing, there were 

multiple seasons where the SARIMA model consistently underperformed relative to the 

naive approach of assigning equal probability to each week of the year; KCDE and HHH4 

were more consistently at or above the level of this naive approach.

The lack of appropriate statistical methods to analyze model performance limits our ability 

to draw formal conclusions about relative model performance. Challenges arise when 

attempting to apply standard methods for formal model comparisons (such as the Diebold-

Mariano test [58]). For example, the standard Diebold-Mariano test assumes that the 

differences in model performance have a fixed mean and variance. However, Figures 4 and 6 

indicate that the mean and variance of log score differences are different in each season, and 

are likely a function of variables such as the timing and severity of the season peak. 

Additionally, due to the limited amount of real data available, we have only a small number 

of testing seasons to evaluate; this makes fitting a more flexible linear mixed effects model 

with a realistic variance structure difficult. Therefore, many of the conclusions about relative 

model performance are based on exploratory and graphical summaries of performance 

metrics. Despite the lack of a formal statistical test, we believe that the graphical summaries 

in Figures 4 and 6 show clear patterns of model performance, and in particular highlight the 

benefits of flexible methods for heterogeneous data.

The goal of making predictions of infectious disease is to provide information to public 

health officials planning interventions several weeks or months before the disease season 

begins or peaks. Predictions that assign very low probability to the eventually observed 

outcome may lead public health agencies to misdirect limited resources, potentially resulting 

in increased disease incidence [5]. Across all three prediction targets, our method 

consistently delivers non-negligible predictive probabilities for the eventually observed 

events. This improved reliability of predictions from KCDE relative to the baseline models 

is an important benefit of the proposed method. However, since year-to-year variation is 
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substantial, continued evaluation of these methods on datasets with longer prospective 

testing phases could provide better information about long-run performance of all of these 

methods.

We have introduced the use of a periodic kernel component that led to substantial 

improvements in the predictive distributions for incidence in individual weeks, and more 

moderate improvements to predictions for peak incidence in both applications and 

predictions of peak timing in the application to influenza. Periodic kernels have not 

otherwise been used in the KCDE literature despite their importance for prediction in 

seasonal systems. This advance improves the applicability of KCDE to infectious disease 

prediction in general and we demonstrate how it leads to improved performance for CDC’s 

chosen prediction targets. An exception to this was for predictions of peak timing in the 

application to dengue fever, where KCDE specifications without the periodic kernel 

component outperformed KCDE specifications with the periodic kernel component (and 

both of the baseline models, which also included seasonal terms) for predictions made 

before the peak occurred. This may be due to the fact that there was quite a bit of variability 

in the timing of the season peak in the test phase seasons for dengue. In future work, we plan 

to consider methods for adapting the strength of the seasonal weighting according to how 

well incidence so far in the current season matches the predominant historical seasonal 

trends.

We also introduced application of KCDE with a fully parameterized bandwidth matrix to 

discrete data. Much infectious disease case data is discrete and small discrete counts can be 

indicative of transmission dynamics driven by stochasticity. Handling this important case 

directly makes our method widely applicable to infectious disease data, particularly when 

combined with the periodic kernel.

While taking advantage of a fully parameterized bandwidth matrix did not lead to consistent 

improvements in our test data, we have demonstrated through a simulation study that the 

fully parameterized bandwidth can be helpful in some conditional density estimation tasks. 

This general method for obtaining discrete kernel functions may be beneficial in other 

applications of KCDE.

An advantage of the approach we have outlined is its flexibility in terms of cleanly handling 

both discrete and continuous data and a variety of underlying disease mechanisms. Our 

method consistently yielded reasonable predictions for all three prediction targets in both 

applications. As we have seen, the HHH4 model is formulated in terms of discrete case 

counts and so could not be directly applied to the influenza data where the disease measure 

was continuous. Even in the data set where it could be used, the HHH4 model 

underperformed relative to KCDE in predictions for incidence in individual weeks and 

incidence in the peak week. Similarly, the standard SARIMA model is formulated in terms 

of continuous distributions, which are not appropriate for use with case count data when 

small integer numbers of cases are reported. The resulting continuous predictive 

distributions can be discretized as we have done in this article, but without extra coding 

effort this discretization is not accounted for during the estimation process so that different 

models are effectively used during estimation and prediction. Furthermore, our approach 
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consistently equalled or exceeded the performance SARIMA across the applications to 

dengue and influenza.

There is room for extensions and improvements to the methods we have outlined in this 

article. One limitation of our work lies in the selection of covariates for the predictive model. 

We have simply used incidence at the two most recent time points, and possibly the 

observation time, as covariates. In theory, the method could accommodate the use of 

additional covariates; however, in practice we are limited by the computationally demanding 

estimation procedure. We considered using a stepwise variable selection approach to select 

the model specification, but we found this to be too computationally expensive to be 

practical; the full grid search suggested by De Gooijer and Gannoun [59] in similar settings 

with only one bandwidth parameter would be far too slow for our methods. In future work, 

we plan to consider methods for combining predictive distributions from multiple small 

KCDE models that each use a small subset of the possible covariates; this strategy should 

reduce the overall computational complexity of estimation with multiple covariates. If 

successful, this would also enable further exploration of using other predictive variables 

such as weather or incidence measures from neighboring locations in the model.

Another method for improving our ability to use covariates would be to replace variable 

selection with shrinkage. [10] show that when cross-validation is used to select the 

bandwidth parameters in KCDE using product kernels, the estimated bandwidths 

corresponding to irrelevant covariates tend to infinity asymptotically as the sample size 

increases. We conjecture that by introducing an appropriate penalty on the elements 

bandwidth matrix, bandwidths for irrelevant covariates could be driven to infinity at lower 

sample sizes. This technique should allow us to include more (possibly irrelevant) covariates 

in the model.

In many disease incidence data sets, we observe multiple incidence time series 

simultaneously. For example, in addition to the national level wILI index used in this article, 

the influenza-like illness data from the CDC contain measures of incidence for 10 smaller 

regions within the United States, and break down incidence within four age groups. The 

methods described in this article could be applied to make predictions with multiple time 

series. For example, one possible approach to this would be to fit a separate predictive model 

for each time series, using the other time series as covariates that are conditioned on. If a 

joint distribution of these time series were required, we could use the copula to estimate joint 

dependence structure across all of the time series; as we mentioned in the introduction, 

similar approaches have been developed in the economics literature [6]. Another option 

would be to use KCDE to directly estimate the joint distribution of a random vector of the 

values of all time series in future time points. Although this is beyond the scope of the 

current article, we have begun exploratory work in this area, and some preliminary results 

from separate KCDE models for influenza fit to each region in the United States are 

available from [60].

Another aspect of our method that should be explored further is the use of log score in 

estimation. We used log scores in this work to match the use of log scores in evaluating and 

comparing the performance of different models. The log score has the advantage of defining 
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a proper scoring rule, but it has the disadvantage of being sensitive to extreme values. 

Previous authors have suggested the use of other loss functions in estimation for kernel-

based density estimation methods that reduce these effects, such as variations on integrated 

squared error [21] or the continuous ranked probability score [22]. Despite discussion in the 

literature of the potential limitations of using log scores for estimation with kernel-based 

methods, there is not conclusive evidence that use of log scores caused any difficulties in our 

application. For example, while the predictive interval coverage rates were too high in the 

application to influenza, coverage rates were too low in the application to dengue fever. 

Nevertheless, details of the loss function used in estimation could impact the utility of the 

resulting predictions.

In the present article, we have simplified the disease prediction task by assuming that the 

disease incidence measure is reported accurately and without delay. This allowed us to focus 

on the narrower methodological question of examining whether KCDE is able to capture 

infectious disease dynamics. However, in order to apply the methods in a real time setting it 

will be crucial to relax this assumption. We envision two ways that this could be done. First, 

we could model the relationship between initial reports of incidence and the final revised 

incidence measure. Using that model, we could use initial reports of incidence at any given 

time to predict the revised incidence at that time. These incidence “nowcasts” could then be 

used as inputs to the KCDE prediction model outlined in this article. This approach is 

similar in spirit to the methods used by Brooks et al.[44]. An alternative approach could use 

KCDE to directly learn a relationship between initial, unrevised, reports of disease incidence 

and the final incidence measure in future weeks.

The KCDE modeling framework could also be applied to directly model the joint 

distribution of incidence in multiple future weeks without the use of a copula. If we were to 

directly model incidence in all remaining weeks of the season with KCDE the method would 

operate more similarly to the approach of Brooks et al.[44], who directly model the 

trajectory of incidence over the course of the season. However, we believe that this line 

would have limited success since fully nonparametric estimation of the joint distribution of 

incidence in 40 future weeks (for example) given only about 15 to 20 years of past data will 

be challenging. Another possible approach would be to use KCDE to obtain a joint 

predictive density of incidence in smaller groups of weeks (for example, 2 – 5 weeks at a 

time) and then combine those predictive densities using a mechanism such as a copula. Such 

an intermediate approach might be able to capture more information about medium-term 

trends in incidence such as holiday effects than the method we have presented in this article 

without suffering from the curse of dimensionality as much as direct application of KCDE to 

an entire season at a time.

There is also a long history of using other modeling approaches such as compartmental 

models for infectious disease prediction. KCDE is distinguished from these approaches in 

that it makes minimal assumptions about the data generating process. This can be either an 

advantage or a disadvantage of KCDE. On the positive side, these minimal assumptions are 

what make KCDE appropriate for use with a wide variety of disease processes with minimal 

changes to the model specification. On the other hand, we believe that a well-specified 

mechanistic model might outperform KCDE in certain circumstances. However, rather than 
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selecting one “preferred” modeling framework or model formulation, we believe it may be 

fruitful to incorporate the methods developed in this paper as components of an ensemble 

with several different types of models. An appropriately constructed ensemble incorporating 

predictions from KCDE as well as other methods might perform better than any of the 

component models on their own, and would be a valuable approach for maximizing the 

utility of these predictions to public health decision makers.

6. Software

The estimation methods were implemented in R and C. All source code and data are 

available in R packages hosted on GitHub [61].

7. Supplementary Material

The reader is referred to the on-line Supplementary Materials for technical details and 

additional figures with further information about the results.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
The components of the kernel function. The top panel shows the periodic kernel function 

illustrated as a function of time in weeks with ρ = π/52 and three possible values for the 

bandwidth parameter η. The lower panel shows the log-normal kernel function in the 

bivariate case. The curves indicate contours of the continuous kernel function and the points 

indicate the discrete kernel function, which is obtained by integrating the continuous kernel 

function. The kernel is centered at (2.5, 2.5) and has bandwidth matrix .
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Figure 2. 
Box plots of results from the simulation study. Positive values indicate simulation trials 

where the full bandwidth specification outperformed the diagonal bandwidth specification 

with the same training data set, as measured by Hellinger distance from the target 

conditional density.
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Figure 3. 
Plots of the data sets we apply our methods to. In each case, the last four years of data are 

held out as a test data set; this cutoff is indicated with a vertical dashed line. For the flu data 

set, low-season incidence was not recorded in early years of data collection. These missing 

data are indicated with vertical grey bars.
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Figure 4. 
Differences in log scores for the weekly predictive distributions obtained from the Periodic, 

Full Bandwidth KCDE model and the baseline models, plotted against the observed 

incidence in the week being predicted. For reference, a log score difference of 2.3 (4.6) 

indicates that the predictive density from KCDE was about 10 (100) times as large as the 

predictive density from the baseline model at the realized outcome. Each point corresponds 

to a unique combination of prediction target week and prediction horizon. The lower panel 

displays a density estimate of incidence levels in each week of the season separately for each 

season in the test phase.
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Figure 5. 
Plots of point and interval predictions from SARIMA and the Periodic, Full Bandwidth 

KCDE model. The point prediction is the median of the predictive distribution for incidence 

in the given week. The interval prediction is a percentile interval; for example, the endpoints 

of the 95% prediction interval are the 2.5th percentile and the 97.5th percentile of the 

predictive distribution.
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Figure 6. 
A summary of performance of each method for predicting incidence in the peak week and 

peak week timing. Each boxplot summarizes all predictions made by a method in a given 

season in weeks before the actual peak week for that season. The vertical axis is the 

difference in log scores between the given method and a naive approach assigning equal 

probability to each week of the year. Positive values indicate cases when the method did 

better than using equal bin probabilities. The horizontal red dash indicates the mean log 

score for those predictions made before the peak within each season. The plots on the right 

display the trajectory of incidence over each season. There were 42 weeks before the peak in 
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the 2009/2010 dengue season, 15 in the 2010/2011 dengue season, 19 in the 2011/2012 

dengue season, 31 in the 2012/2013 dengue season, 23 in the 2011/2012 influenza season, 

and 12 in each of the 2012/2013 and 2013/2014 influenza seasons.
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Table 1

Summaries of model performance for predictions of incidence in individual weeks. The “All Weeks” group 

summarizes log scores for all combinations of prediction horizon and target week in the test period; the “High 

Incidence” group summarizes log scores for predictions of indience in weeks where the observed incidence 

was at least two thirds of the maximum weekly incidence in the test period.

Summary of Log Scores

Disease Subset Model Min Mean

Dengue All Weeks Null KCDE −9.981 −5.147

Full Bandwidth KCDE −10.373 −5.165

Periodic KCDE −11.047 −5.021

Periodic, Full Bandwidth KCDE −10.851 −5.019

HHH4 −16.201 −5.369

SARIMA −14.416 −5.456

High Incidence Null KCDE −9.981 −8.235

Full Bandwidth KCDE −10.373 −8.339

Periodic KCDE −11.047 −7.841

Periodic, Full Bandwidth KCDE −10.851 −7.791

HHH4 −14.665 −9.046

SARIMA −14.416 −9.380

Influenza All Weeks Null KCDE −4.430 −1.039

Full Bandwidth KCDE −5.004 −0.993

Periodic KCDE −3.660 −0.668

Periodic, Full Bandwidth KCDE −3.850 −0.642

SARIMA −6.385 −0.666

High Incidence Null KCDE −4.430 −2.887

Full Bandwidth KCDE −5.004 −3.025

Periodic KCDE −3.660 −2.404

Periodic, Full Bandwidth KCDE −3.850 −2.447

SARIMA −6.385 −2.345

The model in bold font had the highest mean log score within each combination of disease and weeks subset. The model in italicized and 
underlined font had the lowest minimum log score within each combination of disease and weeks subset. In some cases, the same model had both 
the highest average log score and the lowest worst-case log score.
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Table 2

Coverage rates for predictions of disease incidence in individual weeks during the test time frame. For each 

model specification, we have obtained the overall proportion of predictive intervals that contained the realized 

outcome, combining across all prediction horizons and all times in the test period at which the prediction was 

made. For each combination of disease and target coverage rate, the result for the model with actual coverage 

rate closest to the target coverate rate is highlighted.

Nominal Coverage

Disease Model 50% 95%

Dengue Null KCDE 40.958 91.827

Full Bandwidth KCDE 38.794 89.571

Periodic KCDE 44.749 87.343

Periodic, Full Bandwidth KCDE 41.901 86.418

HHH4 40.163 78.217

SARIMA 38.637 79.919

Influenza Null KCDE 69.580 99.457

Full Bandwidth KCDE 70.896 99.420

Periodic KCDE 77.374 99.678

Periodic, Full Bandwidth KCDE 76.150 99.485

SARIMA 73.270 99.384
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Table 3

Summaries of model performance for predictions of incidence in the peak week. The “All Weeks” group 

summarizes results for all combinations of target week in the test period and prediction horizon; the “Before 

Peak” group summarizes results for predictions in weeks before the actual peak for the given season.

Summary of Log Scores

Disease Subset Model Min Mean

Dengue All Weeks Null KCDE −3.221 −0.973

Full Bandwidth KCDE −3.239 −0.933

Periodic KCDE −3.037 −0.771

Periodic, Full Bandwidth KCDE −2.802 −0.739

HHH4 −4.816 −0.901

SARIMA −3.088 −0.836

Equal Bin Probabilities −2.398 −2.398

Before Peak Null KCDE −3.221 −1.570

Full Bandwidth KCDE −3.239 −1.531

Periodic KCDE −3.037 −1.315

Periodic, Full Bandwidth KCDE −2.802 −1.282

HHH4 −4.816 −1.600

SARIMA −3.088 −1.361

Equal Bin Probabilities −2.398 −2.398

Influenza All Weeks Null KCDE −3.487 −1.423

Full Bandwidth KCDE −3.483 −1.311

Periodic KCDE −4.528 −1.337

Periodic, Full Bandwidth KCDE −4.678 −1.313

SARIMA −5.714 −1.140

Equal Bin Probabilities −3.296 −3.296

Before Peak Null KCDE −3.487 −2.538

Full Bandwidth KCDE −3.483 −2.363

Periodic KCDE −4.528 −2.518

Periodic, Full Bandwidth KCDE −4.678 −2.471

SARIMA −5.714 −2.190

Equal Bin Probabilities −3.296 −3.296

The model in bold font had the highest mean log score within each combination of disease and weeks subset. The model in italicized and 
underlined font had the lowest minimum log score within each combination of disease and weeks subset. In some cases, the same model had both 
the highest average log score and the lowest worst-case log score. There were 42 weeks before the peak in the 2009/2010 dengue season, 15 in the 
2010/2011 dengue season, 19 in the 2011/2012 dengue season, 31 in the 2012/2013 dengue season, 23 in the 2011/2012 influenza season, and 12 in 
each of the 2012/2013 and 2013/2014 influenza seasons.
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Table 4

Summaries of model performance for predictions of peak week timing. The “All Weeks” group summarizes 

results for all combinations of target week in the test period and prediction horizon; the “Before Peak” group 

summarizes results for predictions in weeks before the actual peak for the given season. The model in bold 

font had the highest mean log score within each combination of disease and weeks subset.

Summary of Log Scores

Disease Subset Model Min Mean

Dengue All Weeks Null KCDE −5.298 −2.135

Full Bandwidth KCDE −5.279 −2.116

Periodic KCDE −5.684 −2.107

Periodic, Full Bandwidth KCDE −7.824 −2.197

HHH4 −4.867 −2.115

SARIMA −7.601 −2.297

Equal Bin Probabilities −3.951 −3.951

Before Peak Null KCDE −5.298 −3.645

Full Bandwidth KCDE −5.279 −3.656

Periodic KCDE −5.684 −3.759

Periodic, Full Bandwidth KCDE −7.824 −3.940

HHH4 −4.867 −3.814

SARIMA −7.601 −4.001

Equal Bin Probabilities −3.951 −3.951

Influenza All Weeks Null KCDE −4.374 −1.689

Full Bandwidth KCDE −4.193 −1.708

Periodic KCDE −4.227 −1.568

Periodic, Full Bandwidth KCDE −4.283 −1.601

SARIMA −3.868 −1.258

Equal Bin Probabilities −3.951 −3.951

Before Peak Null KCDE −4.374 −3.014

Full Bandwidth KCDE −4.193 −3.094

Periodic KCDE −4.227 −2.945

Periodic, Full Bandwidth KCDE −4.283 −3.000

SARIMA −3.868 −2.383

Equal Bin Probabilities −3.951 −3.951

The model in italicized and underlined font had the lowest minimum log score within each combination of disease and weeks subset. In some 
cases, the same model had both the highest average log score and the lowest worst-case log score. There were 42 weeks before the peak in the 
2009/2010 dengue season, 15 in the 2010/2011 dengue season, 19 in the 2011/2012 dengue season, 31 in the 2012/2013 dengue season, 23 in the 
2011/2012 influenza season, and 12 in each of the 2012/2013 and 2013/2014 influenza seasons.
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